465 research outputs found

    Tv-RIO1 – an atypical protein kinase from the parasitic nematode Trichostrongylus vitrinus

    Get PDF
    Background: Protein kinases are key enzymes that regulate a wide range of cellular processes, including cell-cycle progression, transcription, DNA replication and metabolic functions. These enzymes catalyse the transfer of phosphates to serine, threonine and tyrosine residues, thus playing functional roles in reversible protein phosphorylation. There are two main groups, namely eukaryotic protein kinases (ePKs) and atypical protein kinases (aPKs); RIO kinases belong to the latter group. While there is some information about RIO kinases and their roles in animals, nothing is known about them in parasites. This is the first study to characterise a RIO1 kinase from any parasite. Results: A full-length cDNA (Tv-rio-1) encoding a RIO1 protein kinase (Tv-RIO1) was isolated from the economically important parasitic nematode Trichostrongylus vitrinus (Order Strongylida). The uninterrupted open reading frame (ORF) of 1476 nucleotides encoded a protein of 491 amino acids, containing the characteristic RIO1 motif LVHADLSEYNTL. Tv-rio-1 was transcribed at the highest level in the third-stage larva (L3), and a higher level in adult females than in males. Comparison with homologues from other organisms showed that protein Tv-RIO1 had significant homology to related proteins from a range of metazoans and plants. Amino acid sequence identity was most pronounced in the ATP-binding motif, active site and metal binding loop. Phylogenetic analyses of selected amino acid sequence data revealed Tv-RIO1 to be most closely related to the proteins in the species of Caenorhabditis. A structural model of Tv-RIO1 was constructed and compared with the published crystal structure of RIO1 of Archaeoglobus fulgidus (Af-Rio1). Conclusion: This study provides the first insights into the RIO1 protein kinases of nematodes, and a foundation for further investigations into the biochemical and functional roles of this molecule in biological processes in parasitic nematodes

    Needles in the EST Haystack: Large-Scale Identification and Analysis of Excretory-Secretory (ES) Proteins in Parasitic Nematodes Using Expressed Sequence Tags (ESTs)

    Get PDF
    Excretory-secretory (ES) proteins are an important class of proteins in many organisms, spanning from bacteria to human beings, and are potential drug targets for several diseases. In this study, we first developed a software platform, EST2Secretome, comprised of carefully selected computational tools to identify and analyse ES proteins from expressed sequence tags (ESTs). By employing EST2Secretome, we analysed 4,710 ES proteins derived from 0.5 million ESTs for 39 economically important and disease-causing parasites from the phylum Nematoda. Several known and novel ES proteins that were either parasite- or nematode-specific were discovered, focussing on those that are either absent from or very divergent from similar molecules in their animal or plant hosts. In addition, we found many nematode-specific protein families of domains “transthyretin-like” and “chromadorea ALT,” considered vaccine candidates for filariasis in humans. We report numerous C. elegans homologues with loss-of-function RNAi phenotypes essential for parasite survival and therefore potential targets for parasite intervention. Overall, by developing freely available software to analyse large-scale EST data, we enabled researchers working on parasites for neglected tropical diseases to select specific genes and/or proteins to carry out directed functional assays for demystifying the molecular complexities of host–parasite interactions in a cell

    Proteomic analysis of the excretory-secretory products from larval stages of Ascaris suum reveals high abundance of glycosyl hydrolases

    Get PDF
    Background: Ascaris lumbricoides and Ascaris suum are socioeconomically important and widespread parasites of humans and pigs, respectively. The excretory-secretory (ES) molecules produced and presented at the parasite-host interface during the different phases of tissue invasion and migration are likely to play critical roles in the induction and development of protective immune and other host responses. Methodology/Principal Findings: The aim of this study was to identify the ES proteins of the different larval stages (L3-egg, L3-lung and L4) by LC-MS/MS. In total, 106 different proteins were identified, 20 in L3-egg, 45 in L3-lung stage and 58 in L4. Although most of the proteins identified were stage-specific, 15 were identified in the ES products of at least two stages. Two proteins, i.e. a 14-3-3-like protein and a serpin-like protein, were present in the ES products from the three different larval stages investigated. Interestingly, a comparison of ES products from L4 with those of L3-egg and L3-lung showed an abundance of metabolic enzymes, particularly glycosyl hydrolases. Further study indicated that most of these glycolytic enzymes were transcriptionally upregulated from L4 onwards, with a peak in the adult stage, particularly in intestinal tissue. This was also confirmed by enzymatic assays, showing the highest glycosidase activity in protein extracts from adult worms gut. Conclusions/Significance: The present proteomic analysis provides important information on the host-parasite interaction and the molecular of migratory stages of A. suum. In particularly, the high transcriptionally upregulated of glycosyl hydrolases from L4 onwards reveals indicate that the degradation of complex carbohydrates forms an essential part of the energy metabolism of this parasite once it establishes in the small intestine

    First report of anthelmintic resistance in Haemonchus contortus in alpacas in Australia

    Get PDF
    BACKGROUND: Parasitic nematodes can cause substantial clinical and subclinical problems in alpacas and anthelmintics are regularly used to control parasitic nematodes in alpacas. Although anthelmintic resistance has been reported in ruminants worldwide, very little is known about anthelmintic resistance in alpacas. The present study was carried out to confirm a suspected case of anthelmintic resistance in Haemonchus contortus in alpacas in Australia. METHODS: Post mortem examination of an alpaca was conducted to determine the cause of its death. To confirm a suspected case of macrocyclic lactone (ML) resistance in H. contortus in alpacas, a faecal egg count reduction test (FECRT) was performed using closantel (7.5 mg/kg) and ivermectin (0.2 mg/kg). Nematode species were identified by morphological and molecular methods. RESULTS: Post mortem examination of a 1-year-old female alpaca that had died following a brief period of lethargy, anorexia and recumbency revealed severe anaemia, hypoproteinaemia and gastric parasitism by adult Haemonchus contortus, despite recent abamectin (0.2 mg/kg) treatment. Based on these findings and the exclusive use of MLs in the herd over the preceding six years, ML resistance in parasitic nematodes of alpacas on this farm was suspected. FECRT revealed that the efficacy of closantel was 99% (95% CI 93-100), whereas that of ivermectin was 35% (95% CI 0-78), indicating that the treatment failure was likely due to the presence of ML-resistant nematodes. Larval culture of faecal samples collected following ivermectin treatment consisted of 99% H. contortus and 1% Cooperia oncophora, a result confirmed using a PCR assay. CONCLUSIONS: This study provides the first evidence of ML resistance in H. contortus in alpacas in Australia. Based on the extent of anthelmintic resistance in sheep gastrointestinal nematodes in Australia, veterinarians and alpaca owners should be encouraged to implement integrated parasite management strategies to improve nematode control in alpacas

    Ascaroside Signaling Is Widely Conserved among Nematodes

    Get PDF
    Background: Nematodes are among the most successful animals on earth and include important human pathogens, yet little is known about nematode pheromone systems. A group of small molecules called ascarosides has been found to mediate mate finding, aggregation, and developmental diapause in Caenorhabditis elegans, but it is unknown whether ascaroside signaling exists outside of the genus Caenorhabditis. Results: To determine whether ascarosides are used as signaling molecules by other nematode species, we performed a mass spectrometry-based screen for ascarosides in secretions from a variety of both free-living and parasitic (plant, insect, and animal) nematodes. We found that most of the species analyzed, including nematodes from several different clades, produce species-specific ascaroside mixtures. In some cases, ascaroside biosynthesis patterns appear to correlate with phylogeny, whereas in other cases, biosynthesis seems to correlate with lifestyle and ecological niche. We further show that ascarosides mediate distinct nematode behaviors, such as retention, avoidance, and long-range attraction, and that different nematode species respond to distinct, but overlapping, sets of ascarosides. Conclusions: Our findings indicate that nematodes utilize a conserved family of signaling molecules despite having evolved to occupy diverse ecologies. Their structural features and level of conservation are evocative of bacterial quorum sensing, where acyl homoserine lactones (AHLs) are both produced and sensed by many species of gram-negative bacteria. The identification of species-specific ascaroside profiles may enable pheromone-based approaches to interfere with reproduction and survival of parasitic nematodes, which are responsible for significant agricultural losses and many human diseases worldwide

    In silico analysis of expressed sequence tags from Trichostrongylus vitrinus (Nematoda): comparison of the automated ESTExplorer workflow platform with conventional database searches

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The analysis of expressed sequence tags (EST) offers a rapid and cost effective approach to elucidate the transcriptome of an organism, but requires several computational methods for assembly and annotation. Researchers frequently analyse each step manually, which is laborious and time consuming. We have recently developed ESTExplorer, a semi-automated computational workflow system, in order to achieve the rapid analysis of EST datasets. In this study, we evaluated EST data analysis for the parasitic nematode <it>Trichostrongylus vitrinus </it>(order Strongylida) using ESTExplorer, compared with database matching alone.</p> <p>Results</p> <p>We functionally annotated 1776 ESTs obtained <it>via </it>suppressive-subtractive hybridisation from <it>T. vitrinus</it>, an important parasitic trichostrongylid of small ruminants. Cluster and comparative genomic analyses of the transcripts using ESTExplorer indicated that 290 (41%) sequences had homologues in <it>Caenorhabditis elegans</it>, 329 (42%) in parasitic nematodes, 202 (28%) in organisms other than nematodes, and 218 (31%) had no significant match to any sequence in the current databases. Of the <it>C. elegans </it>homologues, 90 were associated with 'non-wildtype' double-stranded RNA interference (RNAi) phenotypes, including embryonic lethality, maternal sterility, sterile progeny, larval arrest and slow growth. We could functionally classify 267 (38%) sequences using the Gene Ontologies (GO) and establish pathway associations for 230 (33%) sequences using the Kyoto Encyclopedia of Genes and Genomes (KEGG). Further examination of this EST dataset revealed a number of signalling molecules, proteases, protease inhibitors, enzymes, ion channels and immune-related genes. In addition, we identified 40 putative secreted proteins that could represent potential candidates for developing novel anthelmintics or vaccines. We further compared the automated EST sequence annotations, using ESTExplorer, with database search results for individual <it>T. vitrinus </it>ESTs. ESTExplorer reliably and rapidly annotated 301 ESTs, with pathway and GO information, eliminating 60 low quality hits from database searches.</p> <p>Conclusion</p> <p>We evaluated the efficacy of ESTExplorer in analysing EST data, and demonstrate that computational tools can be used to accelerate the process of gene discovery in EST sequencing projects. The present study has elucidated sets of relatively conserved and potentially novel genes for biological investigation, and the annotated EST set provides further insight into the molecular biology of <it>T. vitrinus</it>, towards the identification of novel drug targets.</p

    Cryptosporidium cuniculus - new records in human and kangaroo in Australia

    Get PDF
    BACKGROUND: To date, Cryptosporidium cuniculus has been found exclusively in rabbits and humans. The present study provides the first published molecular evidence for C. cuniculus in an Australian human patient as well as a kangaroo. FINDINGS: Using PCR-based sequencing of regions in the actin, 60 kDa glycoprotein (gp60) and small subunit of ribosomal RNA (SSU) genes, we identified a new and unique C. cuniculus genotype (akin to VbA25) from a human, and C. cuniculus genotype VbA26 from an Eastern grey kangaroo (Macropus giganteus) in Australia. CONCLUSIONS: The characterisation of these genotypes raises questions as to their potential to infect humans and/or other animals in Australia, given that C. cuniculus has been reported to cause cryptosporidiosis outbreaks in Europe

    Cryptosporidium and Giardia taxa in faecal samples from animals in catchments supplying the city of Melbourne with drinking water (2011 to 2015)

    Get PDF
    BACKGROUND: In a long-term program to monitor pathogens in water catchments serving the City of Melbourne in the State of Victoria in Australia, we detected and genetically characterised Cryptosporidium and Giardia in faecal samples from various animals in nine water reservoir areas over a period of 4 years (July 2011 to November 2015). METHODS: This work was conducted using PCR-based single-strand conformation polymorphism (SSCP) and phylogenetic analyses of portions of the small subunit of ribosomal RNA (SSU) and 60 kDa glycoprotein (gp60) genes for Cryptosporidium, and triose-phosphate isomerase (tpi) gene for Giardia. RESULTS: The prevalence of Cryptosporidium was 1.62 % (69 of 4,256 samples); 25 distinct sequence types were defined for pSSU, and six for gp60 which represented C. hominis (genotype Ib - subgenotype IbA10G2), C. cuniculus (genotype Vb - subgenotypes VbA26, and VbA25), and C. canis, C. fayeri, C. macropodum, C. parvum, C. ryanae, Cryptosporidium sp. "duck" genotype, C. suis and C. ubiquitum as well as 12 novel SSU sequence types. The prevalence of Giardia was 0.31 % (13 of 4,256 samples); all three distinct tpi sequence types defined represented assemblage A of G. duodenalis. CONCLUSIONS: Of the 34 sequence types (genotypes) characterized here, five and one have been recorded previously for Cryptosporidium and Giardia, respectively, from humans. Novel genotypes of Cryptosporidium and Giardia were recorded for SSU (n = 12), gp60 (n = 4) and tpi (n = 1); the zoonotic potential of these novel genotypes is presently unknown. Future work will continue to monitor the prevalence of Cryptosporidium and Giardia genotypes in animals in these catchments, and expand investigations to humans. Nucleotide sequences reported in this paper are available in the GenBank database under accession nos. KU531647-KU531718
    corecore